Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Peptides ; 177: 171215, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38608837

ABSTRACT

Melasma is a common skin disease induced by an increase in the content of melanin in the skin, which also causes serious physical and mental harm to patients. In this research, a novel peptide (Nigrocin-OA27) from Odorrana andersonii is shown to exert a whitening effect on C57 mice pigmentation model. The peptide also demonstrated non-toxic and antioxidant capacity, and can significantly reduce melanin content in B16 cells. Topical application effectively delivered Nigrocin-OA27 to skin's epidermal and dermal layers and exhibited significant preventive and whitening effects on the UVB-induced ear pigmentation model in C57 mice. The whitening mechanism of Nigrocin-OA27 may be related to reduced levels of the microphthalmia-associated transcription factor and the key enzyme for melanogenesis-tyrosinase (TYR). Nigrocin-OA27 also inhibited the catalytic activity by adhering to the active core of TYR, thereby reducing melanin formation and deposition. In conclusion, Nigrocin-OA27 may be a potentially effective external agent to treat melasma by inhibiting aberrant skin melanin synthesis.

2.
ACS Appl Mater Interfaces ; 16(11): 13422-13438, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38442213

ABSTRACT

Current treatment for chronic infectious wounds is limited due to severe drug resistance in certain bacteria. Therefore, the development of new composite hydrogels with nonantibiotic antibacterial and pro-wound repair is important. Here, we present a photothermal antibacterial composite hydrogel fabricated with a coating of Fe2+ cross-linked carboxymethyl chitosan (FeCMCS) following the incorporation of melanin nanoparticles (MNPs) and the CyRL-QN15 peptide. Various physical and photothermal properties of the hydrogel were characterized. Cell proliferation, migration, cycle, and free-radical scavenging activity were assessed, and the antimicrobial properties of the hydrogel were probed by photothermal therapy. The effects of the hydrogel were validated in a model of methicillin-resistant Staphylococcus aureus (MRSA) infection with full-thickness injury. This effect was further confirmed by changes in cytokines associated with inflammation, re-epithelialization, and angiogenesis on the seventh day after wound formation. The MNPs demonstrated robust photothermal conversion capabilities. The composite hydrogel (MNPs/CyRL-QN15/FeCMCS) promoted keratinocyte and fibroblast proliferation and migration while exhibiting high antibacterial efficacy, effectively killing more than 95% of Gram-positive and Gram-negative bacteria. In vivo study using an MRSA-infected full-thickness injury model demonstrated good therapeutic efficacy of the hydrogel in promoting regeneration and remodeling of chronically infected wounds by alleviating inflammatory response and accelerating re-epithelialization and collagen deposition. The MNPs/CyRL-QN15/FeCMCS hydrogel showed excellent antibacterial and prohealing effects on infected wounds, indicating potential as a promising candidate for wound healing promotion.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Nanoparticles , Anti-Bacterial Agents/pharmacology , Hydrogels/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Melanins , Peptides
3.
Sci Rep ; 14(1): 7543, 2024 03 30.
Article in English | MEDLINE | ID: mdl-38555384

ABSTRACT

Lung cancer, specifically the histological subtype lung adenocarcinoma (LUAD), has the highest global occurrence and fatality rate. Extensive research has indicated that RNA alterations encompassing m6A, m5C, and m1A contribute actively to tumorigenesis, drug resistance, and immunotherapy responses in LUAD. Nevertheless, the absence of a dependable predictive model based on m6A/m5C/m1A-associated genes hinders accurately predicting the prognosis of patients diagnosed with LUAD. In this study, we collected patient data from The Cancer Genome Atlas (TCGA) and identified genes related to m6A/m5C/m1A modifications using the GeneCards database. The "ConsensusClusterPlus" R package was used to produce molecular subtypes by utilizing genes relevant to m6A/m5C/m1A identified through differential expression and univariate Cox analyses. An independent prognostic factor was identified by constructing a prognostic signature comprising six genes (SNHG12, PABPC1, IGF2BP1, FOXM1, CBFA2T3, and CASC8). Poor overall survival and elevated expression of human leukocyte antigens and immune checkpoints were correlated with higher risk scores. We examined the associations between the sets of genes regulated by m6A/m5C/m1A and the risk model, as well as the immune cell infiltration, using algorithms such as ESTIMATE, CIBERSORT, TIMER, ssGSEA, and exclusion (TIDE). Moreover, we compared tumor stemness indices (TSIs) by considering the molecular subtypes related to m6A/m5C/m1A and risk signatures. Analyses were performed based on the risk signature, including stratification, somatic mutation analysis, nomogram construction, chemotherapeutic response prediction, and small-molecule drug prediction. In summary, we developed a prognostic signature consisting of six genes that have the potential for prognostication in patients with LUAD and the design of personalized treatments that could provide new versions of personalized management for these patients.


Subject(s)
Adenine/analogs & derivatives , Adenocarcinoma of Lung , Lung Neoplasms , Humans , Prognosis , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Nomograms
4.
Biomed Pharmacother ; 171: 116184, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244328

ABSTRACT

Pulmonary fibrosis is the result of dysfunctional repair after lung tissue injury, characterized by fibroblast proliferation and massive extracellular matrix aggregation. Once fibrotic lesions develop, effective treatment is difficult, with few drugs currently available. Here, we identified a short cyclic decapeptide RL-RF10 derived from frog skin secretions as a potential novel lead molecule for the amelioration of pulmonary fibrosis. In vivo experiments indicated that RL-RF10 treatment ameliorated lung histopathological damage and fibrogenesis after paraquat (PQ) induction in a concentration-dependent manner. On day 7, bronchoalveolar lavage fluid assays performed on mice showed that RL-RF10 exerted anti-inflammatory effects by decreasing the expression of inflammation-related factors, including transforming growth factor-ß1 (TGF-ß1) and tumor necrosis factor-α, in lung tissue. In addition, RL-RF10 down-regulated the levels of collagen I, collagen III, and vimentin, while increasing the expression of E-cadherin to inhibit epithelial-mesenchymal transition. Further research demonstrated that the SMAD2/3 signaling pathway, which is strongly linked to TGF-ß1, played a critical function in enhancing the pulmonary fibrosis relief achieved by RL-RF10. Both in vivo and in vitro assays showed that RL-RF10 treatment led to a significant reduction in the phosphorylation levels of SMAD2 and SMAD3 following PQ induction. Overall, we investigated the protective effects and underlying mechanisms of the RL-RF10 peptide against pulmonary fibrosis and demonstrated its potential as a novel therapeutic drug candidate for the treatment of pulmonary fibrotic diseases.


Subject(s)
Lung Injury , Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/metabolism , Paraquat , Transforming Growth Factor beta1/metabolism , Collagen/pharmacology , Amphibians/metabolism , Epithelial-Mesenchymal Transition
5.
Sci Rep ; 13(1): 7557, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37160937

ABSTRACT

Scutellarin is used to treat brain ischaemia. However, its underlying mechanism of action remains unclear. This study aimed to elucidate the potential mechanism of action of scutellarin in brain ischaemia through network pharmacology and experimental verification. The JAK2/STAT3 signalling pathway was identified and experimentally verified. Expression of JAK2/STAT3 signalling related proteins in TNC-1 astrocytes with BV-2 microglia-conditioned medium (CM), CM + lipopolysaccharide (LPS) (CM + L), and CM pretreated with scutellarin + LPS (CM + SL) was analysed by Western Blot and immunofluorescence staining. Expression levels of JAK2, p-JAK2, STAT3, and p-STAT3 were evaluated in astrocytes pre-treated with AG490. Middle cerebral artery occlusion (MCAO) in rats was performed in different experimental groups to detect expression of the above biomarkers. Network pharmacology suggested that the JAK2/STAT3 signalling pathway is one of the mechanisms by which scutellarin mitigates cerebral ischaemic damage. In TNC-1 astrocytes, p-JAK2 and p-STAT3 expression were significantly up-regulated in the CM + L group. Scutellarin promoted the up-regulation of various markers and AG490 neutralised the effect of scutellarin. In vivo, up-regulation of p-JAK2 and p-STAT3 after ischaemia is known. These results are consistent with previous reports. Scutellarin further enhanced this upregulation at 1, 3, and 7 d after MCAO. Scutellarin exerts its therapeutic effects on cerebral ischaemia by activating the astrocyte JAK2/STAT3 signalling, which provides a firm experimental basis for its clinical application.


Subject(s)
Brain Injuries , Brain Ischemia , Animals , Rats , Network Pharmacology , Lipopolysaccharides , Brain Ischemia/drug therapy , Culture Media, Conditioned , Janus Kinase 2
6.
Mol Neurobiol ; 60(8): 4304-4323, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37086342

ABSTRACT

Scutellarin, an herbal agent, is known to possess anti-oxidant and anti-inflammatory properties. In activated microglia, it has been reported that this is achieved through acting on the MAPKs, a key pathway that regulates microglia activation. This study sought to determine if scutellarin would affect the commonly described microglia phenotypes, namely, M1 and M2, thought to contribute to pro- and anti-inflammatory roles, respectively. This is in consideration of its potential effect on the polarization of microglia phenotypes that are featured prominently in cerebral ischemia. For this purpose, we have used an experimentally induced cerebral ischemia rat model and LPS-stimulated BV-2 cell model. Thus, by Western blot and immunofluorescence, we show here a noticeable increase in expression of M2 microglia markers, namely, CD206, Arg1, YM1/2, IL-4 and IL-10 in activated microglia both in vivo and in vitro. Besides, we have confirmed that Scutellarin upregulated expression of Arg1, IL-10 and IL-4 in medium supernatants of BV-2 microglia. Remarkably, scutellarin treatment markedly augmented the increased expression of the respective markers in activated microglia. It is therefore suggested scutellarin can exert the polarization of activated microglia from M1 to M2 phenotype. Because M1 microglia are commonly known to be proinflammatory, while M2 microglia are anti-inflammatory and neuroprotective effect, it stands to reason therefore that with the increase of M2 microglia which became predominant by scutellarin, the local inflammatory response is ameliorated. More importantly, we have found that scutellarin promotes the M2 polarization through inhibiting the JNK and p38 signaling pathways, and concomitantly augmenting the ERK1/2 signaling pathway. This lends its strong support from observations in LPS activated BV-2 microglia treated with p38 and JNK inhibitors in which expression of M2 markers was increased; on the other hand, in cells subjected to ERK1/2 inhibitor treatment, the expression was suppressed. In light of the above, MAPKs pathway is deemed to be a potential therapeutic target of scutellarin in mitigating microglia mediated neuroinflammation in activated microglia.


Subject(s)
Brain Ischemia , Microglia , Rats , Animals , Microglia/metabolism , Interleukin-10/metabolism , Lipopolysaccharides/pharmacology , Interleukin-4 , Anti-Inflammatory Agents/pharmacology , Brain Ischemia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...